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Abstract—This paper proposes a set of recurrent neural 
networks (RNNs) capable of replicating the non-linear 
mechanism of a prosthetic hand based on surface myoelectric 
sensors. The experimental results of the RNN show a good 
result of the system for the training data and an acceptable 
result on the validation data. A comparison between the 
developed RNNs and a similar size non-recurrent neural 
network is included. 

Keywords— finger angles, flexion percentages, myoelectric 
sensors, prosthetic hands, recurrent neural networks 

I. INTRODUCTION 

The creation of lower arm prosthetic systems revolves 
around the pattern recognition of myoelectric signals (MESs) 
[1]–[3] coming from the muscles. The important task is to 
correlate the movement of the arm with the muscle activation 
in order to mimic the nonlinear dynamic system. Neural 
networks (NNs) [4], [5], maximal Lyapunov exponent 
inserted in NN [6] and evolving fuzzy models [7] are 
commonly used to model this nonlinear system. Practical 
achievements of MES-based control of prosthetic arms and 
hands are described in [8]–[10]. Recent results on fuzzy 
control and modeling are presented in [11]–[13]. The 
functional electrical stimulation of the arm by using electric 
impulses to stimulate the neural pathway is another method 
to regain movement in case of nerve damage without the 
hand being amputated. 

This paper suggests a system architecture for prosthetic 
hand myoelectric-based control systems and variable 
structure RNN models of the human hand dynamics, i.e., the 
finger dynamics to be used as reference models in 
myoelectric-based control systems. The inputs of this 
nonlinear system are the MESs obtained from eight sensors 
placed on human subject’s arm, and the outputs are the 
flexion percentages that correspond to the midcarpal joint 
angles. For the sake of simplicity the flexion percentages are 
also called flex percentages and finger angles in the rest of 
the paper. 

The system architecture is based on the general 
architecture given in [13] and on the results reported in [14], 
but this paper is focused on Proportional-Integral-Derivative 
(PID) controllers, which are intended to be first used in the 
real-time control of the prosthetic system. The angles 
involved in the finger dynamics are in fact the midcarpal 
joint angles, and they are referred to as follows as finger 
angles. 

The proposed variable structure recurrent neural network 
(RNN) is used instead of a non-recurrent NN due to its 
ability to learn from previous steps (tn-1, tn-2, ...) meaning 
better performance for this particular nonlinear dynamic 
system. The RNN considered in this paper is a Long-Short 
Term Memory (LSTM) [15], [16] and it will be compared 
with a regular neural network (NN) in order to evaluate the 
strengths and weaknesses of this approach. 

The paper demonstrates that an RNN is capable of 
replicating a nonlinear mechanism of a real human hand. 
This output is used to drive a prosthetic hand by means of the 
system architecture presented in the paper. The dynamics of 
finger flexion is partially taken into account, the prosthetic 
hand delays being ignored for now. This appears in the 
proposed application, as fingers flexion are used as 
references of prosthetic hand. 

Details on the experimental setup (for example, what 
sensors have been used, what sensitivity, frequency band, 
electrodes, etc.) are not given in the sequel as the paper is 
mainly focused on modeling. However, minimum technical 
details related to the sensor placement are presented in the 
next section. No specific detail on the use of the obtained 
results in the control of prosthetic hand is given, so the 
dynamics of the flexion of the fingers is ignored. 

The paper presents an RNN to model the relation 
between the activation of eight muscles in harm and the 
flexion of the five fingers. The purpose of the model is to 
generate the flexion references for the fingers of a prosthetic 
hand, controlled with PID controllers. The proposed RNN 
uses 100 past inputs values in addition to the averaging 
inputs during 10 and 100 samples. The obtained results are 
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compared with the ones obtained with a regular NN using the 
same inputs, averaged inputs and neurons of one layer as 
those for the RNN. The results are also compared to the ones 
obtained using the validation data for training. 

This paper is organized as follows: sensors setup will be 
described in the next section and covers the type, number of 
sensors and placement. The overall system architecture is 
discussed in Section III and concerns the communication 
between different modules. The RNN architecture is 
described in section IV treating topics as structure, number 
of parameters and type of neurons. Section V contains the 
results and comparison with other NN model, with the 
conclusions and future improvements being summarized in 
Section VI. 

II. SENSORS AND THEIR PLACEMENT 

The myoelectric sensors are in essence differential 
amplifiers that transform the electric signals received from 
the muscles into signals that can be read by a microcontroller 
as in Fig. 1. The signal is amplified 200 times and then 
rectified from max (–5V; +5V) to (0V; 5V). The final step is 
to smooth the signal from fast variations to an average in 
order to reduce the load on the microcontroller. This type of 
sensors is used in many versions of lower arm prosthetics 
[17]–[19] because they are relatively easy to use and do not 
require surgery in order to place them. 

 

Fig. 1.  Myoelectric sensor. 

The sensors are placed directly above the muscle or as 
close as possible in order to read the signal from the targeted 
muscle and with the smallest amount of interferences from 
other muscles. The placement of the 8 sensors is done as 
follows: four sensors on the flexor digitorum superficialis as 
in Fig. 2, two sensors on the extensor digitorum and one on 
extensor digiti minimi as in Fig. 2, and one sensor on 
abductor pollicis longus as in Fig. 3. 

    

Fig. 2.  Placement of sensors 1 to 7 on the hand. 

 

Fig. 3.  Placement of sensor 8 on the hand. 

III. SYSTEM ARCHITECTURE 

The system is composed of three major modules: 
acquisition module, neural network module and actuators 
module as shown in Fig. 4. 

 

Fig. 4.  System architecture for prosthetic hand control. 

The split of the system is done in order to reduce the 
complexity of the neural network to a simple Multi Input-
Multi Output (MIMO) system specialized only in mapping 
the non-linear input of the MESs to the flex angle of the 
fingers. In this case the NN performance can be easily 
calculated without being influenced by external factors. 

The acquisition module is based on an Atmega8 
microcontroller and is responsible for the real-time 
acquisition of the MES signals and flex sensor signals. The 
acquisition period is 10 ms and the values go through the 
first layer of filtering which removes unwanted noise. The 
filtered values then go through the normalization phase 
which sets the same range for each sensor (0% to 100% for 
flex sensors and 0 to 255 for myoelectric sensors). Sensor 
ranges for the flex sensors from 0% to 100% for each finger 
represent the finger fully opened and fully closed. For the 
MESs the range 0 to 255 is just the maximum value on 8 
bits, which represents the electric impulse that can be 
received by the targeted muscle. 8 bits were chosen in order 
to avoid unnecessary noise caused by the cables and also to 
lighten the load on the neural network. The obtained values 
are then sent through a serial interface to the neural network 
module to be processed. 

The acquisition module works in two modes: training and 
normal. In the training mode, it sends the flex sensor 
measurements and the MESs measurements because the 
system is used on a healthy hand and creates a correlation 
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between the sensors which is then used to train the neural 
network. In normal mode, the flex sensors are disconnected 
and no values are sent to the NN. 

The neural network module, into normal mode, takes as 
an input the 8 sensors and outputs the flexion percentage of 
each finger that corresponds to the midcarpal joint angles. 
This output is then filtered again to remove noise and 
smoothen, and after that it is sent to the actuators. The 
training of the NN is performed separately on a high 
performance device and had as inputs the measured MESs 
and the flexion percentages. 

The actuators module is in charge of transforming the 
finger closing percentage sent by the RNN into prosthetic 
finger movement. The control of this movement is achieved 
by an appropriately designed PID controller, which controls 
the actuators (servos) and has two inputs: the flexion 
percentages from the RNN and sensor feedback (force, 
angle) from the prosthetic hand. 

IV. RECURRENT NEURAL NETWORK ARCHITECTURE 

The LSTM takes as input the tn value but also the past x 
values, where in this case x = 100 (1 s), with the sampling 
period of 10 ms. The chosen 1 s of recurrence is a covering 
value of fast and average speed contraction of the fingers, 
which are more dependent of the past values. Slow 
movements (over 1 s) are more reliant of sensor averages as 
presented the sequel. 

The internal structure of the network (for only one time 
stamp) makes use of four layers shown in Fig. 5: input layer, 
LSTM layer, a hidden layer and an output layer 

 

Fig. 5.  LSTM network layers. 

For each time stamp n, the input layer is composed of 
3824 ×=  neurons, which take the input vector 

 24]    [ ℜ∈TTTT SAZ  (1) 

composed of three concatenated vectors of eight elements (T 
indicates matrix transposition): 
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as the average of the past ten samples (100 ms) of 
myoelectric sensor j, j=1…8, and 
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is the average of the past 100 samples (1 s) of myoelectric 
sensor j, j=1…8. 

The Z, A and S vectors were chosen based on 
experimental configurations in order to obtain the best 
accuracy, the combination between the instant value of the 
sensor. The 100 ms and 1s averages exhibit the best results. 

The LSTM layer contains the neurons connected from the 
input layer and also the connection to the previous layers. It 
is configured as 300 neurons LSTM layer, and has a 
connection to the past 100 time steps. The size of the LSTM 
layer and hidden layer were raised from 50 (roughly 

timestepsinputlayer× ) to 300 by parameter tuning for an 

increase of 7% accuracy without adding an unpractical 
number of parameters and training time. 

The hidden layer is connected only to the current LSTM 
layer and also contains 300 neurons for a new abstractization 
of the inputs for the nonlinear behavior. Also this layer 
enables the LSTM to output values in the first second 
without having to wait for the first 100 samples to be 
received. This is useful in case of NN module failure and 
reboot in which the system down time is shorter with 1 s. 

The two types of RNN operation are described in Fig. 6 
for the first 1 second (a MIMO system structure) and Fig. 7 
for normal functioning (a Multi Input-Single Output system 
structure). Therefore, the overall description of Fig. 6 and 
Fig. 7 corresponds to a variable structure RNN. 

 

Fig. 6.  LSTM network in the first second. 
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Fig. 7.  LSTM network after the first second. 

The final layer is the output which contains five neurons, 
and the output vector O: 

 T
nnnnn ooooo ]        [ ,5,4,3,2,1=O  (7) 

gathers the flexion percentage of each finger at time stamp n. 

The LSTM networks parameters 
pn  are calculated using 

the formula [15] 

 ],SO  1)SI(SO[4 2++=pn  (8) 

where SI is the input layer size and SO is the output layer 
size. The 4 in front of the right-hand term comes from the 
recurrent layer which, for each neuron, contains three gates 
(read / write / forget) and the fourth parameter for the cell 
state. 

This model contains a total number of 1,112,705 
parameters which were trained. They are distributed as 
follows: 390,000 in the first LSTM layer, 721,200 in the 
hidden LSTM layer and 1,505 in the output layer. 

V. RECURRENT NEURAL NETWORK RESULTS 

The RNN model results are compared to the real hand 
movements (captured by the flex sensor) using the 
performance criterion presented by root mean square error 
(RMSE) for comparison to express the model accuracy: 

 ,100)(
1

RMSE
1

2
,, ⋅−= 

=

D

n
nlnlj yo

D
 (9) 

where l = 1...5 represents the targeted finger, D is the number 
of data samples in the dataset, D = 18,490 for the validation 
dataset, and 

nly ,
 is the flex percentage of the finger l = 1...5 

in the real hand. The training and the validation data sets 
have major influence on the obtained results. 

The training of the networks was done on a training data 
set of 110,374 samples, equivalent to 1,103.74 s. Each time 
sample is composed of 24 inputs, as shown in (1) to (6), and 
five outputs corresponding to the flexion percentage of each 
finger. 

The RMSE value for the RNN on the validation data is 8 
to 9% depending on the training performance and was 
compared with a regular NN with 2 layers of 300 neurons 
(Fig. 8), exhibiting an RMSE of 13 to 14%. For a 
performance benchmark, another instance of the RNN 

trained also with the validation data was created in order to 
simulate a more complete data set, which reached an RMSE 
of 2%. 

An example for each finger is shown as follows: thumb (l 
= 1, Fig. 9), index (l = 2, Fig. 10), middle (l = 3, Fig. 11), 
ring (l = 4, Fig. 12) and little finger (l = 5, Fig. 13). Each 
figure outlines a comparison between the expected result 
(blue), regular NN (red), RNN (green) and RNN when the 
test data was also used for training the RNN (magenta). All 
figures illustrate the results for only 1 to 2 s of data out of the 
184.9 s in order to fit in the paper. 

 

Fig. 8.  Regular NN with a similar size (2 layers of 300 neurons). 

 

Fig. 9.  Thumb finger results for expected result (blue), regular NN (red), 
RNN (green) and RNN trained with validation data (magenta). 

 

Fig. 10.  Index finger results for expected result (blue), regular NN (red), 
RNN (green) and RNN trained with validation data (magenta). 

 

Fig. 11.  Middle finger results for expected result (blue), regular NN (red), 
RNN (green) and RNN trained with validation data (magenta). 
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In general the RNN outperforms a regular NN for each 
finger but, as illustrated in Fig. 9. However, there is a 
situation in which both networks encounter an untrained case 
(fifth movement) and do not replicate the finger movement 
as it was intended. After the case was covered through 
training the RNN with the validation data (magenta line in 
Fig. 9), it is shown that the new RNN gives a more accurate 
result. The result also improves in the case in which the 
output of one finger is influenced by another muscle (Fig. 
14). Here, the flexing of the little finger (black) influences 
the index output for booth he RNN (green) and normal NN 
(red) because the lack of training data for that scenario. 

 

Fig. 12.  Ring finger results for expected result (blue), regular NN (red), 
RNN (green) and RNN trained with validation data (magenta). 

 

Fig. 13.  Little finger results for expected result (blue), regular NN (red), 
RNN (green) and RNN trained with validation data (magenta). 

 

Fig. 14.  Index finger influenced by little finger. 

After the training, the RNN was not influenced any more 
and the output (magenta) follows the desired output of the 
index finger (blue). Nevertheless, the results presented in this 
section prove that necessity of using a recurrent neural 
network over a regular one is justified. 

VI. CONCLUSION 

This paper proposed new variable structure RNNs for 
modeling the nonlinear dynamic output of MESs. The 
obtained models are intended for prosthetic hand control. 
The results obtained by the RNNs outperform the non-
recurrent single layer NN [4] in terms of mean absolute error 
between 9% and 14% and the regular NN considered here 
with similar size due to the recurrent layer which adds the 
evolution in time of the inputs. 

The comparison between the training data and testing 
data outputs show an over fitting to the train data. This will 
be compensated by adding more training samples (the 
current training data contains a time window with the width 
of approximately 1103 s of recordings) and also more 
samples with sensors slightly moved from the ideal position. 

Since the increase of the RNN size by adding more 
neurons and layers offered small improvements in 
performance, future research will focus on preprocessing the 
RNN inputs and also on the neural network by adding more 
features. Useful results from other linear and nonlinear 
system models and applications will be embedded including 
large-scale complex systems [20], evolving and self-learning 
systems [21], [22], automotive and aviation systems [23]–
[25], mobile robots [26]–[29], fuzzy modeling and control 
[30]–[34], other NN architectures [35]–[39], neuron phase 
constancy and the use of fractional order models for 
developing ladder network models [40]–[42]. 

The development of the actuator module in terms of 
algorithmic design, hardware and software implementation is 
also a direction of future research. Fig. 4 highlights one 
controller type to be used in the initial simulations and next 
experiments. 
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